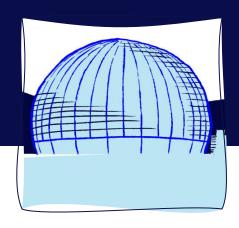
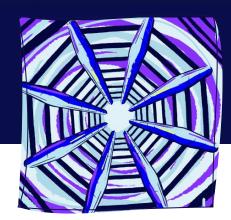
O FCC


Présentation de l'Étude

Arve et Lac, mercredi 25 septembre 2024



Le FCC

L'étude des sous-sols

Le CERN

Organisation européenne pour la recherche nucléaire

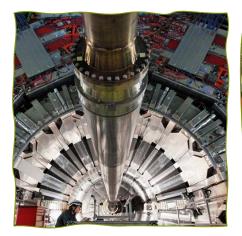
FCC 25 sept. 2024 yann.lechevin@cern.ch

Qui sommes-nous?

ler laboratoire de recherche en physique des particules du monde

- 70 ans d'existence
- **24** Etats membres
- 2 États hôtes Situé à la frontière entre la France et la Suisse
- **2** États en phase d'adhésion

7 États associés



La mission du CERN repose sur quatre piliers

La recherche

L'éducation et la formation

La technologie et l'innovation

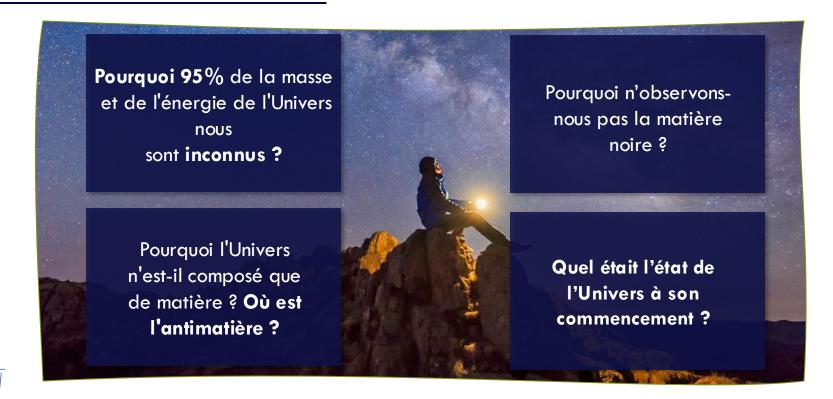
La coopération internationale

Nos outils

Les accélérateurs

Les détecteurs


L'informatique


Le plus puissant accélérateur de particules du monde

- Le Grand collisionneur de hadrons (LHC) est un anneau de **27 km de circonférence** situé à environ **100 mètres sous terre** entre la France (84%) et la Suisse (16%).
- C'est l'infrastructure phare du CERN, attirant des chercheurs du monde entier. Il abrite 4 grandes expériences scientifiques.
- Il a notamment permis la découverte du boson de Higgs, mais de nombreuses questions demeurent.
- C'est pourquoi la communauté scientifique internationale travaille sur un nouvel accélérateur qui prendrait le relais du LHC dès 2045.

De nombreuses questions sont sans réponses

Le FCC à l'étude

Futur Collisionneur Circulaire

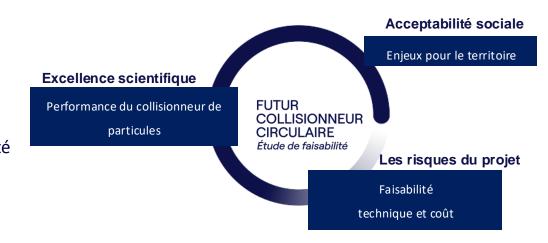
Le LHC achèvera sa mission scientifique aux environs de 2040

- Pour la communauté scientifique internationale, un nouvel accélérateur doit prendre le relais du LHC, dès 2045.
- La stratégie européenne pour la physique des particules a identifié le programme FCC comme une solution possible.
- Pour étudier la faisabilité d'un futur collisionneur circulaire, les 24 Etats membres du CERN ont mandaté l'Organisation en 2020 pour envisager les scénarios de réalisation possibles.

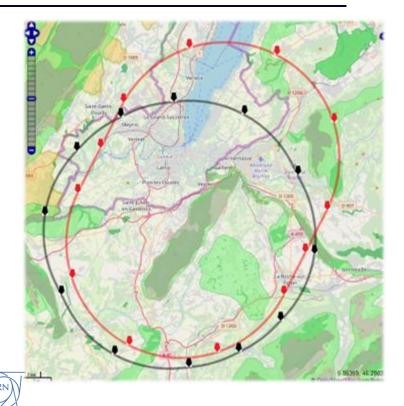
Le FCC, un programme en deux phases

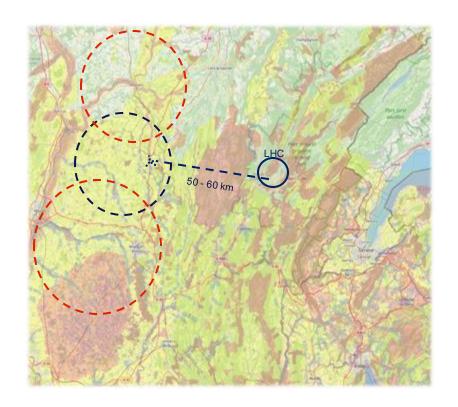
Études ≈2025 Phase ≈2035 Construction ≈2045 Exploitation FCC-ee ≈2060 Exploitation fin XXI°

- Le programme du FCC mènera la recherche scientifique jusqu'à la fin du XXI^e siècle.
- Il comporte deux phases : le FCCee et le FCC-hh.
- Ces deux phases utiliseront la même infrastructure.

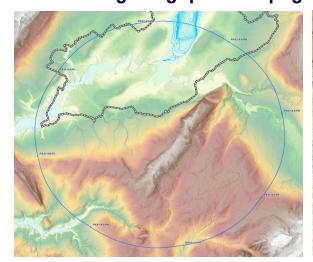


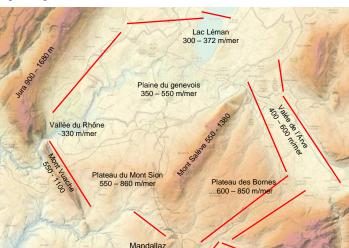
FCC-ee FCC-hh

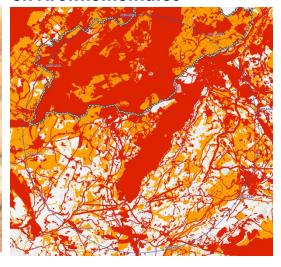

L'étude de faisabilité du FCC



- L'étude entend déterminer si le projet est réalisable et sous quelles conditions, en combinant des aspects scientifiques, techniques, économiques et environnementaux.
- En 2025, une fois cette vaste étude de faisabilité arrivée à son terme, les États Membres du CERN, pourront se prononcer sur la poursuite de cet ambitieux projet scientifique.


Le tracé envisagé : Plusieurs hypothèses




Le tracé envisagé : plusieurs contraintes

Contraintes géologiques et topographiques

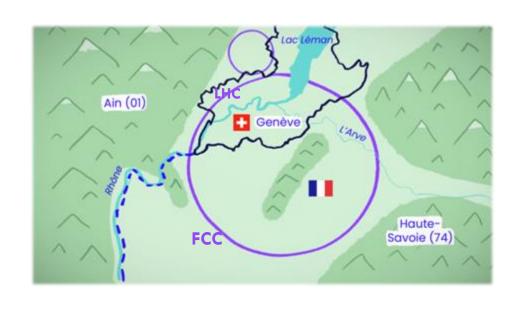
Contraintes territoriales et environnementales

100 scénarios de placement étudiés

La biodiversité des milieux

Afin que les accès au tunnel de l'installation soient les moins intrusifs et pénalisants pour les espaces de faune et flore présents.

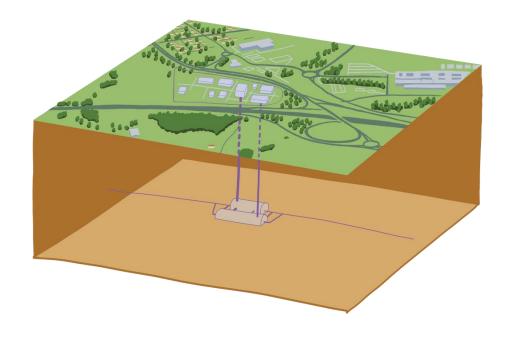
• Les caractéristiques des localités

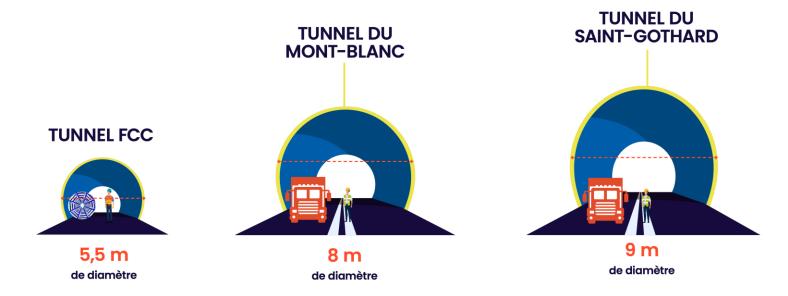

Afin de préserver la vie communautaire, l'identité architecturale et l'activité économique.

La nature des strates géologiques

Le percement du tunnel circulaire demande une connaissance fine de leurs épaisseurs, de leur stabilité et de la présence éventuelle de failles. La composition des couches sera également étudiée afin d'anticiper une réutilisation durable des matériaux excavés.

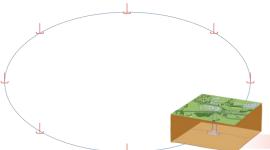
Le scénario envisagé

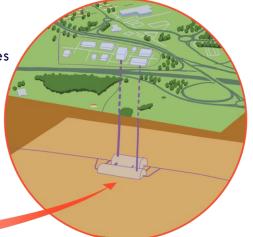

- 91 km de long
- L'Ain, Haute-Savoie, Canton de Genève et lac Léman concernés
- 200 mètres de profondeur en moyenne
- **5,5** mètres de diamètre intérieur


L'installation serait presque entièrement invisible

- Le tunnel serait souterrain et donc invisible en surface.
- Seuls les 8 sites de surface, repartis sur la circonférence du tunnel seraient visibles. Ils seraient d'une taille similaire à ceux du LHC.

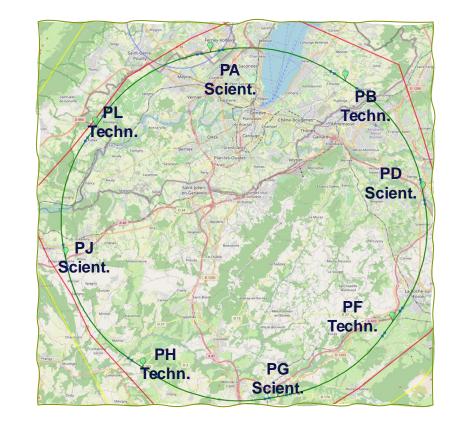
Le tunnel FCC à titre de comparaison





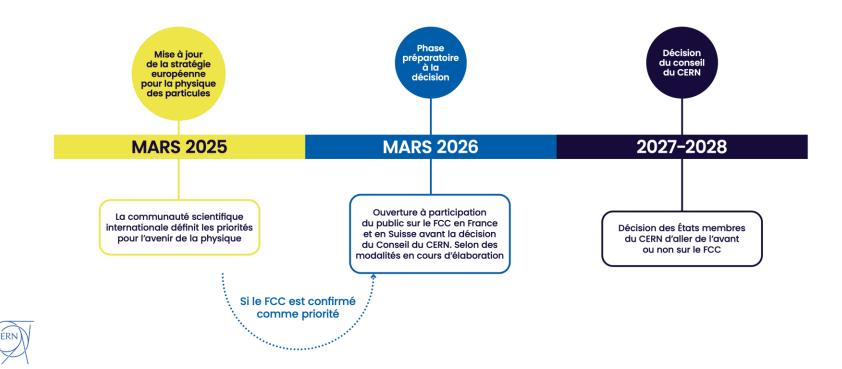
Comment fonctionnerait l'infrastructure?

- Elle relierait le complexe existant d'accélérateurs du CERN qui servirait à préparer les faisceaux et à les injecter, depuis le LHC notamment.
- Les faisceaux de particules circuleraient dans des sens opposés et se croiseraient jusqu'à 4 endroits, afin d'observer les interactions entre les particules.
- 8 sites en surface serviraient à :
 - construire les tunnels et les cavernes ;
 - préparer et installer les équipements dans le collisionneur de particules ;
 - préparer et installer les détecteurs des expériences ;
 - fournir des ressources à la machine (électricité, eau de refroidissement, air frais, systèmes cryogéniques, communications de données).

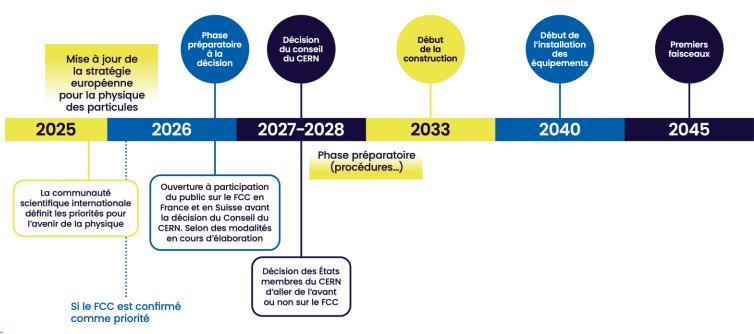

Un scénario qui répond à ces enjeux

Le groupe d'experts a recommandé, en juin 2021, de poursuive les études sur la base d'un scénario garantissant la meilleure performance scientifique et les plus faibles impacts territoriaux.

8 sites de surface


- 1. PA Ferney Voltaire (FR) Site scientifique
- 2. PB Presinge/Choulex (CH) Site technique
- PD Nangy (FR) Site technique et scientifique
- PF Étaux (FR) Site technique

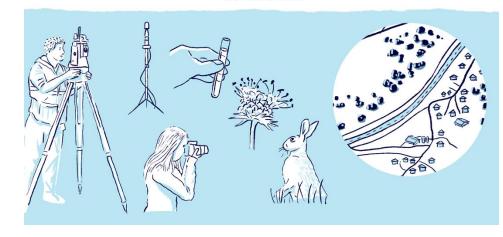
- 5. PG Charvonnex/Groisy (FR) Site scientifique
- 6. PH Cercier/Marlioz (FR) Site technique
- 7. PJ Vulbens/Dingy en Vuache (FR) Site technique et scientifique
- 8. PL Challex (FR) Site technique



Une première étape : la validation scientifique

Un long processus décisionnel

Qu'est-ce que l'étude de stabilité des sols ?

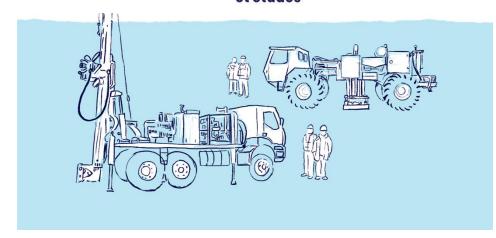


Les campagnes de mesures

- **Depuis 2023** des analyses de terrain ont eu lieu dans le Canton, dans l'Ain et en Haute-Savoie.
- Ces études « non invasives » consistaient à effectuer des mesures (de l'eau, de l'air, du trafic routier, de la pollution etc...) et à établir un inventaire précis de la faune et de la flore.
- Elles ont été menées en lien étroit avec les autorités françaises et suisses et avec les propriétaires et utilisateurs de parcelles.

2023

Campagne de mesures

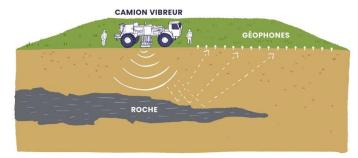

FCC

Comprendre la stabilité du sous-sol

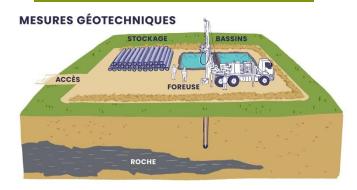
- Fin 2024, des investigations permettront de comprendre la nature et la stabilité du sous-sol.
- Ces données sont indispensables pour envisager les futures installations (tunnel, les cavernes, puits etc...) et conditionnent une partie du tracé du FCC.
- Deux méthodes seront employées successivement : une cartographie acoustique du sous-sol et des forages exploratoires.

2024

Forages et études



Deux méthodes complémentaires


Cartographie acoustique du sous-sol

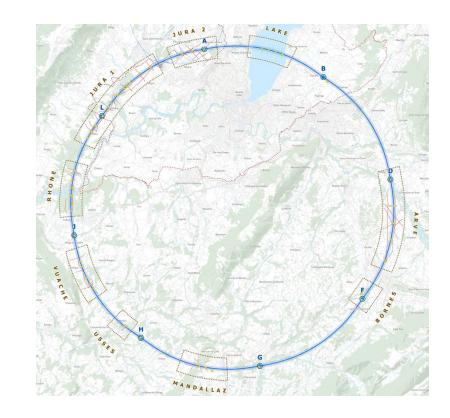
MESURES GÉOPHYSIQUES

Au moyen de camions-vibreurs, elle permet d'obtenir une image des couches géologiques sans nécessiter de forages.

Forages exploratoires

Des sondages sur des profondeurs d'environ 200 à 300 mètres, pour des diamètres de l'ordre de 140 mm, permettent d'obtenir des données précises sur la stabilité et la qualité des sols.

Rappel des objectifs

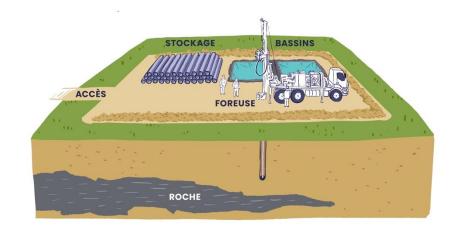

La campagne d'investigations de terrain porte sur neuf zones dans lesquelles un manque de connaissances géologiques est constaté et qui sont déterminantes pour mener à bien l'étude de faisabilité du FCC.

Elle doit permettre de préciser la position :

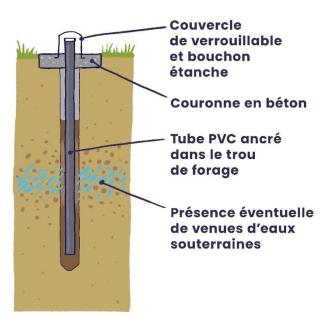
- de la surface de base des dépôts quaternaires en zones de dépression (sous le lac Léman, vallée de l'Arve, vallée du Rhône et vallée des Usses)
- du toit des calcaires karstifiés du Crétacé (près du Jura et du Vuache)

Elle comprend la réalisation de :

- profils sismiques 2D.
- sondages géotechniques.



Sondages géotechniques


- une 40 aine de forages géotechniques répartis en France et en Suisse
- une profondeur entre 50 et 400 mètres
- équipés pour certains de piézomètres

Secteur	Interface	Profondeur (m)
JURA 1	Molasse / Calcaire	150 – 300
JURA 2	Molasse / Calcaire	200 – 300
LEMAN	Quaternaire / Molasse	70 – 170
ARVE	Quaternaire / Molasse	50 – 150
MANDALLAZ	Molasse / Calcaire	100 – 300
USSES	Quaternaire / Molasse	30 – 50
VUACHE	Molasse / Calcaire	150 – 300
RHONE	Quaternaire / Molasse	30 – 150

Les équipements particuliers : le piézomètre

Certains forages seront provisoirement équipés d'un piézomètre permettant de confirmer l'absence d'eaux souterraines et, dans le cas contraire, d'en mesurer le niveau et les pressions associées.

La période de mesure, de l'ordre de 24 mois, sera adaptée en fonction des variations de pression et de niveau des nappes pouvant intervenir au fil du temps.

L'émergence en tête du piézomètre pourra être enterrée à faible profondeur (1 mètre environ) si nécessaire.

Le site optionnel concerné sur la commune de **Presinge**

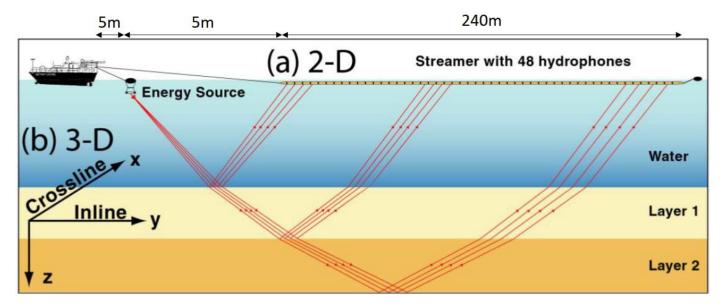
BH_SHAFTB_1 (optionnel)

Sondage #	BH_SHAFTB_1	
Numéro de parcelle	2113	
Profondeur totale	235m	
Profondeur carottée	235m	
Piézomètre	Oui	

La campagne lacustre

Campagne lacustre

- 8 lignes sismiques
- 4 forages d'une profondeur moyenne de 140m



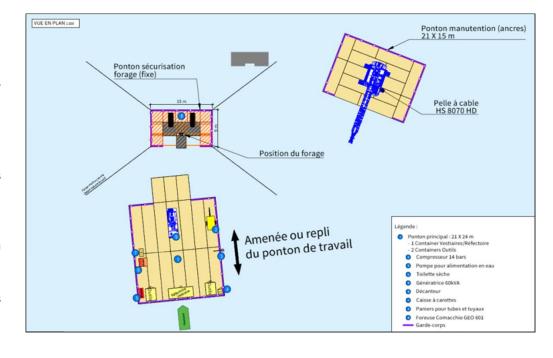
Les profils sismiques

Le principe consiste en la diffusion et l'enregistrement de la propagation d'ondes acoustiques dans le milieu aqueux.

Pour le cadre précis de l'étude, un bateau de l'université de Genève devrait être utilisé. Ce demier embarquerait la source d'énergie et une série de détecteurs en ligne sur environ 250 mètres derrière lui.

L'activité est programmée pour une durée moyenne d'une semaine.

Les forages


L'atelier de forage flottant sera installé pour une durée d'environ 2 mois par forage.

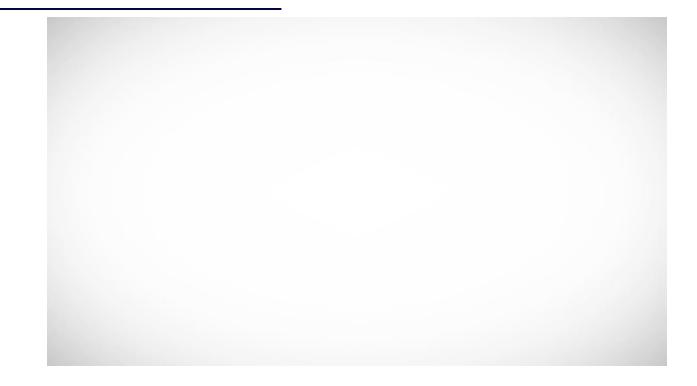
Il sera composé des éléments suivants :

- Un ponton de sécurisation : barge flottante de 15 x 10 m pour sécurisation du forage de maintenir en position le train de tige;
- Un ponton de travail : barge flottante de 20 x 30 m qui portera la machine de forage ;
- Un ponton de manutention : barge de 20 x 15 m pour le déplacement des ancres entre les positions des différents forages. Une pelle à câble permettra la manutention de ces ancres;

Les pontons seront déplacés et mis en place par un bate au pousseur.

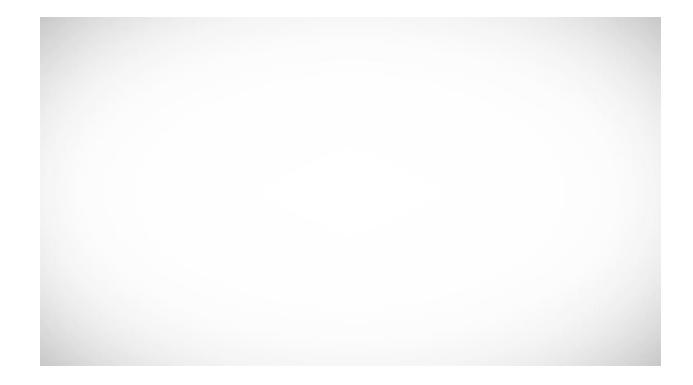

Un bateau navette permettra de desservir les différents pontons.

Site internet pour des informations actualisées



Plus d'informations :

fcc-faisabilite.eu fcc.web.cern.ch/fr home.cern/fr



Les interventions en vidéo - forages

Les interventions en vidéo - géophysique

